skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jencso, Kelsey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Growing demand for water resources coupled with climate-driven water scarcity and variability present critical challenges to agriculture in the Western US. Despite extensive resources allocated to downscaling climate projections and advances in understanding past, current, and future climatic conditions, climate information is underutilized in decisions made by agricultural producers. Climate information providers need to understand why this information is underutilized and what would better meet the needs of producers. To better understand how agricultural producers perceive and utilize climate information, we conducted five focus groups with farmers and ranchers across Montana. Focus groups revealed that there are fundamental scalar issues (spatial and temporal) that make climate information challenging for producers to use. While climate information is typically produced at regional, national, or global spatial scales and at a seasonal and mid- to end-of-century temporal scales, producers indicated that decision-making takes place at multiple intermediate and small temporal and spatial scales. In addition, producers described other drivers of decision-making that have little to do with climate information itself, but rather aspects of source credibility, past experience, trust in information, and the politics of climate change. Through engaging directly with end-users, climate information providers can better understand the spatial and temporal scales that align with different types of agricultural producers and decisions, as well as the limitations of information provision given the complexity of the decision context. Increased engagement between climate information providers and end-users can also address the important tradeoffs that exist between scale and uncertainty. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. High frequency and spatially explicit irrigated land maps are important for understanding the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution irrigation maps using Google Earth Engine for the years 1986–2018 for 11 western states within the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields, and over 500,000 km 2 of uncultivated lands. We used 60,000 point samples from 28 years to extract Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over the seven years of available data and found good overall agreement between the 2832 county-level estimates (r 2 = 0.90), and high agreement when estimates are aggregated to the state level (r 2 = 0.94). We analyzed trends over the 33-year study period, finding an increase of 15% (15,000 km 2 ) in irrigated area in our study region. We found notable decreases in irrigated area in developing urban areas and in the southern Central Valley of California and increases in the plains of eastern Colorado, the Columbia River Basin, the Snake River Plain, and northern California. 
    more » « less
  5. Abstract Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management. 
    more » « less
  6. null (Ed.)
    Abstract The 2017 flash drought arrived without early warning and devastated the U.S. northern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental health. These effects motivated a multiagency collaboration among academic, tribal, state, and federal partners to evaluate drought early warning systems, coordination efforts, communication, and management practices with the goal of improving resilience and response to future droughts. This essay provides an overview on the causes, predictability, and historical context of the drought, the impacts of the drought, opportunities for drought early warning, and an inventory of lessons learned. Key lessons learned include the following: 1) building partnerships during nondrought periods helps ensure that proper relationships are in place for a coordinated and effective drought response; 2) drought information providers must improve their understanding of the annual decision cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors; and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given that seasonal forecasts lack skill over the northern Great Plains. 
    more » « less
  7. Abstract Patterns of energy and available moisture can vary over small (<1 km) distances in mountainous terrain. Information on fuel and soil moisture conditions that resolves this variation could help to inform fire and drought management decisions. Here, we describe the development of TOPOFIRE, a web-based mapping system designed to provide finely resolved information on soil water balance, drought, and wildfire danger information for the contiguous United States. We developed 8-arc-second-resolution (~250 meter) daily historical, near real-time, and 4-day forecast radiation, temperature, humidity, and snow water equivalent data and used these grids to calculate a suite of drought and wildfire danger indices. Large differences in shortwave radiation and surface air temperature with aspect contribute to greater snow accumulation and delays in melt timing on north-facing slopes, delaying fuel conditioning on shaded slopes. These datasets will help advance our understanding of the role of topography in wildland fire spread and ecological effects. Integration with national programs like the Wildland Fire Assessment System, the Wildland Fire Decision Support System, and drought early warning systems could support more proactive management of wildland fires and refine the characterization of drought in mountainous regions of the United States. 
    more » « less
  8. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences. We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures. 
    more » « less